This is post #1 on the binomial option pricing model. Even though this is post #1, there are two previous posts with examples to illustrate how to price options using the oneperiod binomial pricing model (example of call and example of put). The purpose of post #1:
Post #1: Describe the option pricing formulas in the oneperiod binomial model.
___________________________________________________________________________________
The oneperiod binomial option pricing model
We first consider the pricing of options on stock. The most important characteristic of the binomial option pricing model is that over a period of time, the stock price is assumed to follow a binomial distribution, i.e. the price of the stock can only take on one of two values – an upped value and a downed value. In this post, we describe how to price an option on a stock using this simplifying assumption of stock price movement.
Consider a stock with the following characteristics:
 The current share price is .
 If the stock pays dividends, we assume the dividends are paid at an annual continuous rate at .
 At the end of a period of length (in years), the share price is either or , where is the up factor and is the down factor. The factor can be interpreted as one plus the rate of capital gain on the stock if the stock goes up. The factor can be interpreted as one plus the rate of capital loss if the stock goes down.
 If , the end of period share price is or . This is to reflect the gains from reinvesting the dividends. Of course if , the share prices revert back to the previous bullet point.
The end of period stock prices are shown in the following diagram, which is called a binomial tree since it depicts the 2state stock price at the end of the option period.
Now consider a European option (either call or put) on the stock described above. When the stock goes up, we use to represent the value of the option. When the stock goes down, we use to represent the value of the option. The following is the binomial tree for the value of the option.
Replicating Portfolio
The key idea to price the option is to create a portfolio consisting of shares of the stock and the amount in lending. At time 0, the value of this portfolio is . At time (the end of the option period), the value of the portfolio is
Time value of the replicating portfolio
This portfolio is supposed to replicate the same payoff as the value of the option. By equating the portfolio payoff with the option payoff, we obtain the following linear equations.
There are two unknowns in the above two equations. All the other items – stock price , dividend rate , and riskfree interest rate – are known. Solving for the two unknowns and , we obtain:
Once the replication portfolio of shares and in lending is determined, the price of the option (the value at time 0) is:
After plugging in (1) and (2) into (3), the option price formula becomes:
The price of the option described above is , either given by formula (3) or formula (4). One advantage of formula (4) is that it gives the direct calculation of the option price without knowing and . Of course, if the goal is to create a synthetic option for the purpose of hedging or risk management, it will be necessary to know the make up of the replicating portfolio.
The calculated in (1) is also called the hedge ratio and is examined in greater details in in this subsequent post.
___________________________________________________________________________________
Examples
Example 1
Let’s walk through a quick example to demonstrate how to apply the above formulas. Suppose that the future prices for a stock are modeled with a oneperiod binomial tree with 1.3 and 0.8 and having a period of 6 months. The current price of the stock is $50. The stock pays no dividends. The annual riskfree interest rate is 4%.
 Determine the price of a European 55strike call option on this stock that will expire in 6 months.
 Determine the price of a European 45strike put option on this stock that will expire in 6 months.
The twostate stock prices are $65 and $40. The twostate call option values at expiration are $10 and $0. Apply (1) and (2) to obtain the replicating portfolio and then the price of the call option.
0.4
$15.68317877
The replicating portfolio consists of holding 0.4 shares and borrowing $15.68317877.
Call option price = $4.316821227
The 2state put option values at expiration are $0 and $5. Now apply (1) and (2) and obtain:
$12.74258275
The replicating portfolio consists of shorting 0.2 shares and lending $12.74258275.
Put option price = $2.742582753
Example 1 is examined in greater details in this subsequent post.
More Examples
Two more examples are in these previous posts:
___________________________________________________________________________________
What to do if options are mispriced
What if the observed price of an option is not the same as the theoretical price? In other words, what if the price of a European option is not given by the above formulas? Because we can always hold stock and lend to replicate the payoff of an option, we can participate in arbitrage when an option is mispriced by buying low and selling high. The idea is that if an option is underpriced, then we buy low (the underpriced option) and sell high (the corresponding synthetic option, i.e. the replicating portfolio). On the other hand, if an option is overpriced, then we buy low (the synthetic option) and sell high (the overpriced option). Either case presents riskfree profit. We demonstrate with the options in Example 1.
Example 2
 Suppose that the price of the call option in Example 1 is observed to be $4.00. Describe the arbitrage.
 Suppose that the price of the call option in Example 1 is observed to be $4.60. Describe the arbitrage.
For the first scenario, we buy low (the option at $4.00) and sell the synthetic option at the theoretical price of $4.316821227. Let’s analyze the cash flows in the following table.
Table 1 – Arbitrage opportunity when call option is underpriced
The above table shows that the buy low sell high strategy produces no loss at expiration of the option regardless of the share prices at the end of the option period. But the payoff at time 0 is certain: $4.316821227 – $4.00 = $0.316821227.
For the second scenario, we still buy low and sell high. This time, buy low (the synthetic call option at $4.316821227) and sell high (the call option at the observed price of $4.60). Let’s analyze the cash flows in the following table.
Table 2 – Arbitrage opportunity when call option is overpriced
The above table shows that the buy low sell high strategy produces no loss at expiration of the option regardless of the share prices at the end of the option period. But the payoff at time 0 is certain: $4.60 – $4.316821227 = $0.283178773.
These two examples show that if the option price is anything other than the theoretical price, there are arbitrage opportunities and there is riskfree profit to be made.
___________________________________________________________________________________
How to construct a binomial tree
In the binomial tree in Figure 1, we assume that the share price at expiration is obtained by multiplying the original share price by the movement factors of and . The binomial tree in Figure 1 may give the impression that the choice of the movement factors and is arbitrary as long as the up factor is greater than 1 and the down factor is below 1. In the next post, we show that and have to satisfy the following relation, else there will be arbitrage opportunities.
Thus the choice of and cannot be entirely arbitrary. In particular the relation (5) shows that the future stock prices have to revolve around the forward price.
The purpose pf the factors and in the binomial tree is to incorporate uncertainty of the stock prices. In light of (6), we can set and by applying some volatility adjustment to . We can use the following choice of and to model the stock price evolution.
where
is the annualized standard deviation of the continuously compounded stock return,
is the standard deviation of the continuously compounded stock return over a period of length .
The standard deviation measures how certain we are that the stock return will be close to the expected return. There will be a greater chance of a return far from the expected return if the stock has a higher . If , then there is no uncertainty about the future stock prices. The formula (7) shows that when , the future stock price is precisely the forward price on the stock. When the binomial tree is constructed using (7), the tree will be called a forward tree.
A note on calculation. If a problem does not specific and but assume a standard deviation of stock return , then assume that the binomial tree is the forward tree. We now use a quick example to demonstrate how to price an option using the forward tree.
Example 3
Everything is the same as Example 1 except that the up and down stock prices are constructed using the volatility 30% (the standard deviation ). The following calculates the stock prices at expiration of the option.

$63.06431255
$41.25989534
1.261286251
0.825197907
Using formulas (1), (2) and (3), the following shows the replicating portfolio and the call option price. Note that the binomial tree is based on a different assumption than that in Example 1. The option price is thus different than the one in Example 1.
0.369847654
–$14.95770971
The replicating portfolio consists of holding 0.369847654 shares and borrowing $14.95770971.
Call option price = $3.534672982
The following shows the calculation for the put option.
0.171529678
$10.60320232
The replicating portfolio consists of shorting 0.171529678 shares and lending $10.60320232.
Put option price = $2.026718427
___________________________________________________________________________________
More examples
We present two more examples in illustrating the calculation in the oneperiod binomial option model where the stock prices are modeled by a forward tree.
Example 4
The stock price follows a 6month binomial tree with initial stock price $60 and 0.3. The stock is nondividend paying. The annual risk free interest rate is 4%. What is the price of a 6month 55strike call option? Determine the replicating portfolio that has the same payoff as this call option.
We will use riskneutral probabilities to price the option.

$75.67717506
$49.51187441
75.67717506 – 55 = 20.67717506
0
1.261286251
0.825197907
0.447164974
0.552835026
9.063023234
0.790251766
–$38.35208275
The replicating portfolio consists of holding 0.79025 shares and borrowing $38.352.
Example 5
The stock price follows a 3month binomial tree with initial stock price $40 and 0.3. The stock is nondividend paying. The annual risk free interest rate is 5%. What is the price of a 3month 45strike put option on this stock? Determine the replicating portfolio that has the same payoff as this put option.
The calculation is calculated as in Example 3.

$47.05793274
$34.861374
0
45 – 34.861374 = $10.138626
1.176448318
0.87153435
0.462570155
0.537429845
5.381114117
0.831269395
$38.63188995
The replicating portfolio consists of shorting 0.831269395 shares and lending $38.63188995.
___________________________________________________________________________________
Remarks
The discussion in this post is only the beginning of the binomial pricing model. The concepts and the formulas for the oneperiod binomial option model are very important. The oneperiod model may seem overly simplistic (or even unrealistic). One way to make it more realistic is to break up the oneperiod into multiple smaller periods and thus produce a more accurate option price. The calculation for the multiperiod binomial model is still based on the calculation for the oneperiod model. Before moving to the multiperiod model, we discuss the oneperiod model in greater details to gain more understanding of the oneperiod model.
___________________________________________________________________________________
Practice problems
Practice Problems
Practice problems can be found in the companion problem blog via the following links:
___________________________________________________________________________________
Tagged: Abitrage, Binomial Option Pricing Model, Call Option, Derivative contract, European Call Option, European Put Option, Financial Math, Forward Tree, Option, Put Option, PutCall Parity, RiskNeutral Probability, Synthetic Call, Synthetic Put, ZeroCoupon Bond
Leave a Reply